EN.530.678: Nonlinear Control and Planning in Robotics

Lecture # 12
Sampling-based Motion Planning

April 20, 2015
The trajectory planning problem

- design a reference trajectory \(x(t) \in \mathbb{R}^n \) and control inputs \(u(t) \in \mathbb{R}^m \) by solving the constrained optimal control problem:

\[
\min_{x(\cdot), u(\cdot), t_f} J = \phi(x(t_f), t_f) + \int_{t_0}^{t_f} L(x(t), u(t), t) dt,
\]

subject to:

\[
\begin{align*}
 x(t_0) &= x_0, \quad x(t_f) \text{ and } t_f \text{ free} \quad (2) \\
 \dot{x}(t) &= f(x(t), u(t), t) \quad (3) \\
 c(x(t), u(t), t) &\leq 0, \text{ for all } t \in [t_0, t_f] \quad (4) \\
 \psi(x(t_f), t_f) &\leq 0, \quad (5)
\end{align*}
\]

where

- \([t_0, t_f]\) - time horizon, \(x_0\)-initial state
- \(L\) - trajectory cost: e.g. control effort, energy, time, distance
- \(\phi\) - terminal cost: e.g. reaching a desired region
- \(c\) - trajectory constraints: e.g. control bounds, forbidden regions in \(X\)
- \(\psi\) - terminal constraint defines algebraically a goal region
Issues and Challenges

Generally, it’s a hard problem:

- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete
Issues and Challenges

Generally, it’s a hard problem:

- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques

- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
Issues and Challenges

Generally, it’s a hard problem:
- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques
- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
Issues and Challenges

Generally, it’s a hard problem:
- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques
- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
- linearize/convexify the problem
 - might become too conservative or not realizable; might not scale to complex constraints
Issues and Challenges

Generally, it’s a hard problem:

- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques

- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
- linearize/convexify the problem
 - might become too conservative or not realizable; might not scale to complex constraints
- discretize the space and use discrete search
 - not scalable: exponential in state dimension and time
 - dynamic constraints difficult to handle
Issues and Challenges

Generally, it’s a hard problem:
- no closed-form solution in general (beyond the linear-quadratic case)
- infinite dimensional; numerically NP-complete

Solution Techniques
- nonlinear optimization (over finite trajectory parameterization)
 - could be slow, might not converge, only locally optimal
- stochastic trajectory optimization
 - cannot handle complex constraints, e.g. narrow passages
- linearize/convexify the problem
 - might become too conservative or not realizable; might not scale to complex constraints
- discretize the space and use discrete search
 - not scalable: exponential in state dimension and time
 - dynamic constraints difficult to handle
- sampling-based methods
 - randomized approximation of the space of trajectories (e.g. as a graph with randomly sampled nodes) and then search
 - By law of large numbers it approaches the optimal solution but typically at a very slow rate
Example: Tree-based Sampling Motion Planning

optimal motion?

probabilistic roadmap (PRM)

kinodynamic planning
The basic algorithm: rapidly-exploring random tree (RRT)

Algorithm 1: $\mathcal{T} \leftarrow \text{RRT}(\eta_0)$

1. $\mathcal{T} \leftarrow \text{InitializeTree}()$
2. $\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, \eta_0, \mathcal{T})$
3. for $i = 1 : N$ do
 4. $\eta_{\text{rand}} \leftarrow \text{Sample}$
 5. $\eta_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, \eta_{\text{rand}})$
 6. $(\bar{x}_{\text{new}}, \bar{u}_{\text{new}}, T_{\text{new}}) \leftarrow \text{Steer}(\eta_{\text{nearest}}, \eta_{\text{rand}})$
 7. if ObstacleFree(\bar{x}_{new}) then
 8. $\mathcal{T} \leftarrow \text{InsertNode}(\eta_{\text{nearest}}, \eta_{\text{new}}, \mathcal{T})$
4. return \mathcal{T}

- A node is the tuple $\eta_i = (x_i, p_i, J_i) \in \mathcal{N} = \mathcal{X} \times \mathbb{N} \times \mathbb{R}_+$ where
 - $x_i \in \mathcal{X}$ is the state
 - $p_i \in \mathbb{N}$ is the index of the parent node of i, i.e. η_{p_i} is the parent of η_i
 - J_i is the cumulative cost from the start η_0 to η_i
- A tree $\mathcal{T} \subset \mathcal{N}$ is a particular arrangement of nodes
The basic algorithm: rapidly-exploring random tree (RRT)

![Algorithm 2: $\mathcal{T} \leftarrow \text{RRT}(\eta_0)$]

1. $\mathcal{T} \leftarrow \text{InitializeTree}()$
2. $\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, \eta_0, \mathcal{T})$
3. for $i = 1 : N$ do
 4. $\eta_{\text{rand}} \leftarrow \text{Sample}$
 5. $\eta_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, \eta_{\text{rand}})$
 6. $(\bar{x}_{\text{new}}, \bar{u}_{\text{new}}, T_{\text{new}}) \leftarrow \text{Steer}(\eta_{\text{nearest}}, \eta_{\text{rand}})$
 7. if ObstacleFree(\bar{x}_{new}) then
 8. $\mathcal{T} \leftarrow \text{InsertNode}(\eta_{\text{nearest}}, \eta_{\text{new}}, \mathcal{T})$
4. return \mathcal{T}

- A node is the tuple $\eta_i = (x_i, p_i, J_i) \in \mathcal{N} = \mathcal{X} \times \mathcal{N} \times \mathbb{R}_+$ where
 - $x_i \in \mathcal{X}$ is the state
 - $p_i \in \mathcal{N}$ is the index of the parent node of i, i.e. η_{p_i} is the parent of η_i
 - J_i is the cumulative cost from the start η_0 to η_i
- A tree $\mathcal{T} \subset \mathcal{N}$ is a particular arrangement of nodes
Key ingredients

- sampling routine Sample
- distance function $\rho(x_a, x_b) \geq 0$ for determining Nearest (T, η)
- steering method Steer(η_a, η_b)
- collision detection ObstacleFree(x)
Key ingredients: sampling routine Sample

- **Baseline**: uniform sampling

 - *low-dispersion*: reduce largest unsampled space between all samples
 \[
 \delta(P) = \sup_{x \in \mathcal{X}} \min_{x' \in P} \{\rho(x, x')\},
 \]
 where \(P\) is a set of sampled points

 - *low-discrepancy*: # of samples inside a set are consistent with the volume of the set
 \[
 D(P, \mathcal{R}) = \sup_{R \in \mathcal{R}} \left\{ \left\| \frac{|P \cap R|}{k} - \frac{\mu(R)}{\mu(\mathcal{X})} \right\| \right\},
 \]
 where \(\mathcal{R}\) are all subsets of \(\mathcal{X}\) and \(\mu\) measures the volume of a set

- **Non-uniform sampling**: exploiting problem structure (more later)
Key ingredients: sampling routine Sample

- **Baseline:** uniform sampling

 - *low-dispersion:* reduce largest unsampled space between all samples

 $\delta(P) = \sup \left\{ \min_{x \in \mathcal{X}} \{ \rho(x, x') \} \right\},$

 where P is a set of sampled points

 - *low-discrepancy:* # of samples inside a set are consistent with the volume of the set

 $D(P, \mathcal{R}) = \sup_{R \in \mathcal{R}} \left\{ \left\| \frac{|P \cap R|}{k} - \frac{\mu(R)}{\mu(\mathcal{X})} \right\| \right\},$

 where \mathcal{R} are all subsets of \mathcal{X} and μ measures the volume of a set

 - non-uniform sampling: exploiting problem structure (more later)
Key ingredients: distance function

Distance function $\rho(x_a, x_b) \geq 0$ for determining Nearest (T, η)

▶ ideal distance is the true cost-to-go from x_a to x_b, i.e.
\[
\rho(x_a, x_b) = J(\bar{x}_{a \rightarrow b}, \bar{u}_{a \rightarrow b})
\]
Key ingredients: distance function

Distance function $\rho(x_a, x_b) \geq 0$ for determining Nearest (T, η)

- ideal distance is the true cost-to-go from x_a to x_b, i.e.
 $$\rho(x_a, x_b) = J(\bar{x}_{a \rightarrow b}, \bar{u}_{a \rightarrow b})$$
- which typically unavailable or expensive to compute so use a lower bound heuristic cost, e.g.

$$\rho(x_a, x_b) = \sqrt{(x_b - x_a)^T W (x_b - x_a)},$$

i.e. a weighted Euclidean distance (for some matrix $W > 0$)
Key ingredients: distance function

Distance function \(\rho(x_a, x_b) \geq 0 \) for determining Nearest \((T, \eta)\)

- **ideal distance** is the true cost-to-go from \(x_a\) to \(x_b\), i.e.
 \[\rho(x_a, x_b) = J(\bar{x}_{a\rightarrow b}, \bar{u}_{a\rightarrow b}) \]

- which typically unavailable or expensive to compute so use a lower bound *heuristic cost*, e.g.

\[
\rho(x_a, x_b) = \sqrt{(x_b - x_a)^T W (x_b - x_a)},
\]

i.e. a weighted Euclidean distance (for some matrix \(W > 0 \))

- Nearest \((T, \eta)\) can be set by:
 - \(\rho(x_a, x_b)\): local distance ordering, i.e. standard RRT
 - \(J_a + \rho(x_a, x_b)\): cost-to-come to parent + local distance ordering, i.e. RRT with optimal cost-to-come
Key ingredients: steering method $\text{Steer}(\eta_a, \eta_b)$

- Structured models (assume controllability)
 - open-loop trajectory generation: exploit nonholonomy, flatness, symmetries, if possible
 - employ efficient closed-form local methods, e.g. polynomial boundary value solutions

- Complicated / Black box models:
 - only possible to sample control space
 - observe/simulate generated trajectories
 - must be resolution complete: i.e. reach infinitely close to any state
 - typically implies a regularity condition: that small change in u result in small change in x
Key ingredients: steering method \textbf{Steer} \((\eta_a, \eta_b)\)

- Structured models (assume controllability)
 - open-loop trajectory generation: exploit nonholonomy, flatness, symmetries, if possible
 - employ efficient closed-form local methods, e.g. polynomial boundary value solutions

- Complicated / Black box models:
 - only possible to sample control space
 - observe/simulate generated trajectories
 - must be \textit{resolution complete}: i.e. reach infinitely close to any state
 - typically implies a regularity condition: that small change in \(u\) result in small change in \(x\)
Key ingredients: steering method $\text{Steer}(\eta_a, \eta_b)$

- Structured models (assume controllability)
 - open-loop trajectory generation: exploit nonholonomy, flatness, symmetries, if possible
 - employ efficient closed-form local methods, e.g. polynomial boundary value solutions

- Complicated / Black box models:
 - only possible to sample control space
 - observe/simulate generated trajectories
 - must be \textit{resolution complete}: i.e. reach infinitely close to any state
 - typically implies a regularity condition: that small change in u result in small change in x

- Steering using a finite set of primitives
 - primitives must be carefully chosen to satisfy controllability
 - in this case controllability is equivalent to \textit{resolution completeness}
Key ingredients: collision checking \(\text{ObstacleFree}(\bar{x}_{\text{new}}) \)

- ensure constraints \(c(t, x, u) \leq 0 \) are satisfied
- often the free configuration space is difficult to compute
- easiest to use a black-box collision checking package
- simulate controls \(u(t) \) and check collision

Example: Proximity Query Package (PQP)

http://gamma.cs.unc.edu/SSV/
Tree-based planners

Various tree-based planners are possible (LaValle, 2006)

It is critical to solve the boundary value (steering) problem (BVP)

a) standard planning to a goal set X_G
b) reaching a specific goal
c) tree grown backwards from goal
d) bidirectional tree: forward from start and backward from goal
Key challenges in motion planning

- achieving efficiency even in high dimensions
- handling complicated constraints, e.g. narrow passages
- finding optimal not just feasible solutions
- hybrid and non-smooth systems
- distributed systems planning, parallel processing
- dealing with uncertainty
 - partially known system dynamics
 - unstructured dynamic uncertain environment
 - formal robustness guarantees
- holy grail: unifying planning, estimation, and control
Workspace Adaptivity in Sampling-based methods

- Complex planning problems can be addressed through adaptation
- Example: handling narrow passages

- Constructing roadmaps adaptively

- David Hsu, Tingting Jiang, John Reif, Zheng Sun, The Bridge Test for Sampling Narrow Passages with Probabilistic Roadmap Planners, ICRA, 2003
- many more: Kurniawati, Hsu; Ladd, Kavraki; Rickert, Brock, Knoll; etc...
From exploration to optimality

- Sampling-based methods are good at exploring the space to find “a path” but notoriously slow in converging to the “optimal” path.
- An important recent method: RRT* (Karaman, Frazzoli, 2011)
- Idea: rewire tree to maintain optimal cost-to-go
- Key result: only need to rewire by checking $\approx \log(n)$ neighbors
- Challenges: extend theory to complex dynamics; principled neighbor selection; CPU time?
The RRT* algorithm

Algorithm 3: $\mathcal{T} \leftarrow \text{RRT}^*(\eta_0, \mathcal{X}_g)$

1. $\mathcal{T} \leftarrow \text{InitializeTree}()$
2. $\mathcal{T} \leftarrow \text{InsertNode}(\emptyset, \eta_0, \mathcal{T})$
3. for $i = 1 : N$ do
 4. $\eta_{\text{rand}} \leftarrow \text{Sample}(i)$
 5. $\eta_{\text{nearest}} \leftarrow \text{Nearest}(\mathcal{T}, \eta_{\text{rand}})$
 6. $(x_{\text{new}}, u_{\text{new}}, T_{\text{new}}) \leftarrow \text{Steer}(\eta_{\text{nearest}}, \eta_{\text{rand}})$
 7. if $\text{ObstacleFree}(x_{\text{new}})$ then
 8. $\mathcal{N}_{\text{near}} \leftarrow \text{Near}(\mathcal{T}, x_{\text{new}}, |V|)$
 9. $\eta_{\text{min}} = \text{ChooseParent}(\mathcal{N}_{\text{near}}, \eta_{\text{nearest}}, x_{\text{new}})$
 10. $\mathcal{T} \leftarrow \text{InsertNode}(\eta_{\text{min}}, x_{\text{new}}, \mathcal{T})$
 11. $\mathcal{T} \leftarrow \text{Rewire}(\mathcal{T}, \mathcal{N}_{\text{near}}, \eta_{\text{min}}, x_{\text{new}})$
4. return \mathcal{T}
The RRT* algorithm (cont.)

Algorithm 4: $\eta_{\text{min}} \leftarrow \text{ChooseParent}(N_{\text{near}}, \eta_{\text{nearest}}, x_{\text{new}})$

1. $\eta_{\text{min}} \leftarrow \eta_{\text{nearest}}$
2. $c_{\text{min}} \leftarrow \text{CostToCome}(\eta_{\text{nearest}}) + \text{Cost}(x_{\text{new}})$
3. for $\eta_{\text{near}} \in N_{\text{near}}$ do
 4. $(x', u', T') \leftarrow \text{Steer}(\eta_{\text{near}}, \eta_{\text{new}})$
 5. if ObstacleFree(x') and $x'(T') = \eta_{\text{new}}$ then
 6. $c' = \text{CostToCome}(\eta_{\text{near}}) + \text{Cost}(x')$
 7. if $c' < c_{\text{min}}$ then
 8. $\eta_{\text{min}} \leftarrow \eta_{\text{near}}$
 9. $c_{\text{min}} \leftarrow c'$
4. return η_{min}

Algorithm 5: $T \leftarrow \text{Rewire}(T, N_{\text{near}}, \eta_{\text{min}}, x_{\text{new}})$

1. for $\eta_{\text{near}} \in N_{\text{near}} \setminus \{\eta_{\text{min}}\}$ do
 2. $(x', u', T') \leftarrow \text{Steer}(\eta_{\text{new}}, \eta_{\text{near}})$
 3. if ObstacleFree(x') and $x'(T') = \eta_{\text{near}}$ and
 4. CostToCome$(\eta_{\text{new}}) + \text{Cost}(x') < \text{CostToCome}(\eta_{\text{near}})$ then
 5. $T \leftarrow \text{Reconnect}(\eta_{\text{new}}, \eta_{\text{near}}, T)$
5. return T
Towards optimal adaptive sampling

But still all these methods sample from the space of states: information about trajectory cost is not fully exploited

New method: Cross-entropy motion planning

- it is not necessary to sample everywhere uniformly
- adaptively sample nodes by exploiting cost information
- perform *density estimation* of low-cost regions in trajectory space
- “learn” regions in state space where “good” trajectories lie

Adaptive density discovers salient regions for obtaining samples
TCE Cross-entropy Planning

Algorithm Overview: Trajectory-Cross-Entropy (TCE) Motion Planning

0. Expand RRT/PRM and attempt to connect to goal region
1. Obtain all RRT/PRM trajectories \(\{\pi_i\}_{i=1}^N \) reaching the goal
2. Construct parametrized trajectories \(Z_i = \psi(\pi_i) \)
3. Update \(p_Z \) using the elite subset of these parameters
4. Sample a trajectory \(Z \sim p_Z \)
5. Select one or more states \(X = \varphi(Z, t) \) for a random \(t \) and add to RRT/PRM
6. Repeat from either (0) or (1) with some probability. Stop on a termination condition.

The density over trajectories \(p_Z(Z) \) induces a density \(p_X(X) \) over states:

\[
p_X(X) = \eta \cdot \max_{Z \in Z_{\text{con}}} \{p_Z(Z) \mid X = \varphi_X(Z, t) \text{ for some } 0 < t < \tau(Z)\},
\]

SCE Cross-entropy Planning

Algorithm Overview: State-Cross-Entropy (SCE) Motion Planning

0. Expand RRT/PRM and attempt to connect to goal region
1. Obtain all RRT/PRM trajectories \(\{\pi_i\}_{i=1}^N \) reaching the goal
2. Discretize each trajectory \(\pi_i \) into a set of states
3. Update \(p_X \) using the elite subset of all states of discretized trajectories
4. Sample a state \(X \sim p_X \) and add to RRT/PRM
5. Repeat from either (0) or (1) with some probability. Stop on a termination condition.

SCE-RRT* with adaptive Gaussian Mixture Model sampling