EN530.678 Nonlinear Control and Planning in Robotics
Homework #4
April 1, 2015

Due: April 15, 2015 (before class)

Prof: Marin Kobilarov

Figure 1: a) Flexible-joint robot b) Car-like robot

1. (Khalil) Consider the system

\[
\begin{align*}
\dot{x}_1 &= -x_1 + x_2 - x_3, \\
\dot{x}_2 &= -x_1 x_3 - x_2 + u, \\
\dot{x}_3 &= -x_1 + u, \\
y &= x_3
\end{align*}
\]

(a) Is the system input-output linearizable?

(b) If yes, transform it into the normal form and specify the region over which the transformation is valid.

(c) Is the system minimum phase?

2. Consider the system

\[
\begin{align*}
\dot{x}_1 &= -x_2 - \frac{3}{2} x_1^2 - \frac{1}{2} x_1^3, \\
\dot{x}_2 &= u
\end{align*}
\]

(a) Using backstepping, design a controller which uses linear feedback in the first stage, i.e. the desired value of \(x_2\) should be of the form \(k x_1\) and choose \(k\) appropriately. In other words, we should have an error variable \(z = x_2 - k x_1\) for the second stage.

Note: a linear controller is preferred since it will result in smaller control effort when far away from the origin.

(b) Design a globally stabilizing state feedback controller by using feedback linearization.

(c) Compare the two designs. Using Matlab simulations, compare their performance and the control effort used in each case. Plot representative graphs of the states and control.

(d) (Optional: for extra credit*) Find a purely linear controller \(u = k_1 x_1 + k_2 x_2\) that results in asymptotic stability?
3. Consider the dynamics of the flexible joint robot (Figure 1a) given by

\begin{align*}
I \ddot{q}_1 + Mgl \sin q_1 + k(q_1 - q_2) &= 0 \\
J \ddot{q}_2 + k(q_2 - q_1) &= u.
\end{align*}

The goal is to achieve a desired motion of the first joint \(q_1 \) expressed using the output function

\[y = q_1. \]

(a) Show that the virtual input that renders this system feedback linearizable is

\[v = y^{(4)} \]

and provide the static feedback transformation

\[u = \alpha(x) + \beta(x)v \]

(b) Find a control law for the virtual input \(v \) so that the error state given by

\[
\begin{pmatrix}
y - y_d \\
\dot{y} - \dot{y}_d \\
\ddot{y} - \ddot{y}_d \\
y^{(3)} - y_d^{(3)}
\end{pmatrix}
\]

stabilizes to zero. Note: it is enough to express the closed-loop system as \(\dot{z} = Az \) and assume standard stability conditions on the chosen gains. Extra credit: what are the exact algebraic stability requirements on the chosen gains?

4. Consider the control of a car-like robot (Figure 1b) with equations of motion

\begin{align*}
\dot{x} &= v \cos \theta \\
\dot{y} &= v \sin \theta \\
\dot{\theta} &= \tan u_1 \\
\dot{v} &= u_2
\end{align*}

where the state \((x, y, \theta, v)\) denotes the position, orientation, and forward velocity. The inputs \(u_1 \) and \(u_2 \) denote the steering wheels angle and the forward acceleration, respectively. The constant \(\ell > 0 \) denotes the distance between the axles.

(a) Using feedback linearization, design a control law that can track a given trajectory \((x(t), y(t))\).

(b) Repeat (a) using backstepping.

(c) Implementation. Write a Matlab script \texttt{car_traj_f1.m} which implements your feedback-linearizing controller to follow a chosen reference trajectory. A file \texttt{uni_flat_f1.m} which demonstrates these functions for a related system is provided as a reference which you can use for your own implementation if you choose to.

i. Plot the desired reference path
ii. Implement your tracking controller and follow the generated path. Start at a “per-
turbed” initial state and show that your controller stabilizes to the desired trajectory.

Optional: inject noise in the controls along the path and observe performance.

(d) Repeat (c) for the backstepping controller and name the code `car_traj_bs.m`

5. (Khalil) Consider the system

\[
\begin{align*}
\dot{x}_1 &= -x_1 + x_1 x_2, \\
\dot{x}_2 &= x_2 + x_3, \\
\dot{x}_3 &= x_1^2 + \delta(x) + u,
\end{align*}
\]

where \(\delta(x)\) is an unknown (locally Lipschitz) function of \(x\) that satisfies \(|\delta(x)| \leq k\|x\|\) for all \(x\), with known constant \(k\). Design a globally stabilizing state feedback controller.

6. Consider the dynamics of a mechanical system given by

\[
M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = u,
\]

where the mass \(M\), Coriolis \(C\), and gravity \(g\) are functions that are not perfectly known. Their known nominal values are given by \(\hat{M}, \hat{C}, \hat{g}\).

(a) Design a nominal controller \(\hat{u} = \psi(x)\) which can asymptotically stabilize the nominal (known) system

\[
\hat{M}(q)\ddot{q} + \hat{C}(q, \dot{q})\dot{q} + \hat{g}(q) = \hat{u},
\]

to the origin \(x = 0\), where we used the notation \(x = (q, \dot{q})\).

(b) Express the original uncertain system according to

\[
\dot{x} = f(x) + G(x)[u + \delta(x, u)],
\]

where the functions \(f(x)\) and \(G(x)\) encode the known dynamics and \(\delta(x, u)\) represents the uncertainty. Provide the exact expressions for \(f, G\) and \(\delta\).

(c) Design a robust controller \(u = \psi(x) + v\) by providing a disturbance attenuation term \(v\) which renders the closed-loop system asymptotically stable outside of an infinitely-small region around the origin. You can assume that a bound on the uncertainty is provided in the form

\[
\|\delta(x, \psi(x) + v)\| \leq \rho(\|x\|) + k_0\|v\|,
\]

for some positive function \(\rho\) and a constant \(0 \leq k_0 < 1\).

(d) A bound of the form \((1)\) is possible only under certain conditions on the deviation of the terms \(M, C, g\) from their nominal values. What are these conditions?