1 Optimality Conditions

- Find the value of \(x \in \mathbb{R}^n \) which minimizes \(f(x) \)
- We will generally assume that \(f \) is at least twice-differentiable

Local and Global Minima

- Strict Local Minimum
- Local Minima
- Strict Global Minimum

Small variations \(\Delta x \) yield a cost variation (using a Taylor’s series expansion)

\[
f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^T \Delta x \geq 0,
\]

to first order, or two second order:

\[
f(x^* + \Delta x) - f(x^*) \approx \nabla f(x^*)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x^*) \Delta x \geq 0,
\]

- Then \(\nabla f(x^*) \Delta x \geq 0 \) for arbitrary \(\Delta x \) \(\Rightarrow \) \(\nabla f = 0 \)
- Then \(\nabla f = 0 \) \(\Rightarrow \) \(\frac{1}{2} \Delta x^T \nabla^2 f(x^*) \Delta x \geq 0 \) for arbitrary \(\Delta x \) \(\Rightarrow \) \(\nabla^2 f(x^*) \geq 0 \)

Proposition 1. (Necessary Optimality Conditions) [1] Let \(x^* \) be an unconstrained local minimum of \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) that it is continuously differentiable in a set \(S \) containing \(x^* \). Then

\[
\nabla f = 0 \quad (\text{First-order Necessary Conditions})
\]

If in addition, \(f \) is twice-differentiable within \(S \) then

\[
\nabla^2 f \geq 0 : \text{positive semidefinite} \quad (\text{Second-order Necessary Conditions})
\]
Proof: Let \(d \in \mathbb{R}^n \) and examine the change of the function \(f(x + \alpha d) \) with respect to the scalar \(\alpha \)

\[
0 \leq \lim_{\alpha \to 0} \frac{f(x^* + \alpha d) - f(x^*)}{\alpha} = \nabla f(x^*)^T d,
\]

The same must hold if we replace \(d \) by \(-d\), i.e.

\[
0 \leq -\nabla f(x^*)^T d \Rightarrow \nabla f(u)^T d \leq 0,
\]

for all \(d \) which is only possible if \(\nabla f(u) = 0 \).

The second-order Taylor expansion is

\[
f(x^* + \alpha d) - f(x^*) = \alpha \nabla f(x^*) d + \frac{\alpha^2}{2} d^T \nabla^2 f(x^*) d + o(\alpha^2)
\]

Using \(\nabla f(x^*) = 0 \) we have

\[
0 \leq \lim_{\alpha \to 0} \frac{f(x^* + \alpha d) - f(x^*)}{\alpha^2} = \frac{1}{2} d^T \nabla^2 f(x^*) d,
\]

hence \(\nabla^2 f \) must be positive semidefinite. \(\square \)

Note: small-o notation means that \(o(g(x)) \) goes to zero faster than \(g(x) \), i.e. \(\lim_{x \to 0} \frac{o(g(x))}{g(x)} = 0 \)

Proposition 2. (Second Order Sufficient Optimality Conditions) Let \(f : \mathbb{R}^n \to \mathbb{R} \) be twice continuously differentiable in an open set \(S \). Suppose that a vector \(x^* \in S \) satisfies the conditions

\[
\nabla f(x^*) = 0, \quad \nabla^2 f(x^*) > 0 : \text{positive definite}
\]

Then, \(x^* \) is a strict unconstrained local minimum of \(f \). In particular, there exist scalars \(\gamma > 0 \) and \(\epsilon > 0 \) such that

\[
f(x) \geq f(x^*) + \gamma \frac{2}{\epsilon} \|x - x^*\|^2, \quad \forall x \quad \text{with} \quad \|x - x^*\| \leq \epsilon.
\]

Proof: Let \(\lambda \) be the smallest eigenvalue of \(\nabla^2 f(x^*) \) then we have

\[
d^T \nabla^2 f(x^*) d \geq \lambda \|d\|^2 \quad \text{for all} \quad d \in \mathbb{R}^m,
\]

The Taylor expansion, and using the fact that \(\nabla f(x^*) = 0 \)

\[
f(x^* + d) - f(x^*) = \nabla f(x^*) d + \frac{1}{2} d^T \nabla^2 f(x^*) d + o(\|d\|^2)
\]

\[
\geq \frac{\lambda}{2} \|d\|^2 + o(\|d\|^2)
\]

\[
= \left(\frac{\lambda}{2} + o(\|d\|^2) \right) \|d\|^2.
\]

This is satisfied for any \(\epsilon > 0 \) and \(\gamma > 0 \) such that

\[
\frac{\lambda}{2} + o(\|d\|^2) \geq \gamma \quad \text{forall} \quad \|d\| \leq \epsilon.
\]

\(\square \)
1.1 Examples

- Convex function with strict minimum

\[f(x) = \frac{1}{2} x^T \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} x \]

The critical point is the origin \(x = (0, 0) \), while the Hessian is

\[\nabla^2 f = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} \]

and has eigenvalues \(\lambda_1 \approx 0.70 \) and \(\lambda_2 \approx 4.30 \) corresponding to eigenvectors \(v_1 \approx (-0.96, -0.29) \) and \(v_2 \approx (-0.29, 0.96) \).

- Saddlepoint: one positive eigenvalue and one negative

\[f(x) = \frac{1}{2} x^T \begin{bmatrix} -1 & 1 \\ 1 & 3 \end{bmatrix} x \]

The Hessian \(\nabla^2 f \) is constant and has eigenvalues \(\lambda_1 \approx -1.24 \) and \(\lambda_2 \approx 3.24 \) corresponding to eigenvectors \(v_1 \approx (-0.97, 0.23) \) and \(v_2 \approx (0.23, 0.97) \).
Singular point: one positive eigenvalue and one zero eigenvalue

\[f(x) = (x_1 - x_2^2)(x_1 - 3x_2^2) \]

The gradient is

\[\nabla f(x) = \begin{bmatrix} 2x_1 - 4x_2^2 \\ -8x_1x_2 + 12x_2^3 \end{bmatrix} \]

and the Hessian is

\[\nabla^2 f(x) = \begin{bmatrix} 2 & -8x_2 \\ -8x_2 & -8x_1 + 36x_2^2 \end{bmatrix} \]

The first-order necessary condition gives the critical point \(x^* = (0, 0) \) but we cannot determine whether that is a strict local minimum since the Hessian is singular at \(x^* \), i.e. it has eigenvalues \(\lambda_1 = 2 \) and \(\lambda_2 = 0 \) corresponding to eigenvectors \(v_1 = (1, 0) \) and \(v_2 = (0, 1) \).
• a complicated function with multiple local minima

2 Numerical Solution: gradient-based methods

In general, optimality conditions for general nonlinear functions cannot be solved in closed-form. It is necessary to use an iterative procedure starting with some initial guess \(x = x^0 \), i.e.

\[
x^{k+1} = x^k + \alpha^k d^k, \quad k = 0, 1, \ldots
\]

until \(f(x^k) \) converges. Here \(d^k \in \mathbb{R}^n \) is called the descent direction (or more generally “search direction”) and \(\alpha^k > 0 \) is called the stepsize. The most common methods for finding \(\alpha^k \) and \(d^k \) are gradient-based. Some use only first-order information (the gradient only) while other additionally use higher-order (gradient and Hessian) information.

• Gradient-based methods follow the general guidelines:

1. Choose direction \(d^k \) so that whenever \(\nabla f(x^k) \neq 0 \) we have

\[
\nabla f(x^k)^T d^k < 0,
\]

i.e. the direction and negative gradient make an angle < 90°

2. Choose stepsize \(\alpha^k > 0 \) so that

\[
f(x^k + \alpha d^k) < f(x^k),
\]

i.e. cost decreases

• Cost reduction is guaranteed (assuming \(\nabla f(x^k) \neq 0 \)) since we have

\[
f(x^{k+1}) = f(x^k) + \alpha^k \nabla f(x^k)^T d^k + o(\alpha^k)
\]

and there always exist \(\alpha^k \) small enough so that

\[
\alpha^k \nabla f(x^k)^T d^k + o(\alpha^k) < 0.
\]
2.1 Selecting Descent Direction \(d \)

Descent direction choices

- Many gradient methods are specified in the form

 \[
 x^{k+1} = x^k - \alpha^k D^k \nabla f(x^k),
 \]

 where \(D^k \) is positive definite symmetric matrix.

- Since \(d^k = -D^k \nabla f(x^k) \) and \(D^k > 0 \) the descent condition

 \[
 -\nabla f(x^k)^T D^k \nabla f(x^k) < 0,
 \]

 is satisfied.

We have the following general methods:

Steepest Descent

\[
D^k = I, \quad k = 0, 1, \ldots,
\]

where \(I \) is the identity matrix. We have

\[
\nabla f(x^k)^T d^k = -\|\nabla f(x^k)\|^2 < 0, \quad \text{when} \quad \nabla f(x^k) \neq 0
\]

Furthermore, the direction \(\nabla f(x^k) \) results in the fastest decrease of \(f \) at \(\alpha = 0 \) (i.e. near \(x^k \)).

Newton’s Method

\[
D^k = [\partial^2 f(x^k)]^{-1}, \quad k = 0, 1, \ldots,
\]

provided that \(\partial^2 f(x^k) > 0 \).

- The idea behind Newton’s method is to minimize a quadratic approximation of \(f \) around \(x^k \)

 \[
 f^k(x) = f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{1}{2} (x - x^k)^T \partial^2 f(x^k) (x - x^k),
 \]

 and solve the condition \(\nabla f^k(x) = 0 \)

- This is equivalent to

 \[
 \nabla f(x^k) + \partial^2 f(x^k)(x - x^k) = 0
 \]

 and results in the Newton iteration

 \[
 x^{k+1} = x^k - [\partial^2 f(x^k)]^{-1} \nabla f(x^k)
 \]
Diagonally Scaled Steepest Descent

\[
D^k = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & 0 \\
0 & d^k_1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & d^k_{n-1} \\
0 & 0 & 0 & \cdots & 0 & d^k_n \\
\end{pmatrix} \equiv \text{diag}([d^k_1, \ldots, d^k_n]),
\]

for some \(d^k_i > 0 \). Usually these are the inverted diagonal elements of the hessian \(\nabla^2 f \), i.e.

\[
d^k_i = \left[\frac{\partial^2 f(x^k)}{(\partial x_i)^2} \right]^{-1}, \quad k = 0, 1, \ldots,
\]

Gauss-Newton Method

When the cost has a special least squares form

\[
f(x) = \frac{1}{2} \| f(x) \|^2 = \frac{1}{2} \sum_{i=1}^{m} (g_i(x))^2
\]

we can choose

\[
D^k = \left[\nabla g(x^k) \nabla g(x^k)^T \right]^{-1}, \quad k = 0, 1, \ldots
\]

Conjugate-Gradient Methods

Idea is to choose linearly independent (i.e. conjugate) search directions \(d^k \) at each iteration. For quadratic problems convergence is guaranteed by at most \(n \) iterations. Since there are at most \(n \) independent directions, the independence condition is typically reset every \(k \leq n \) steps for general nonlinear problems.

The directions are computed according to

\[
d^k = -\nabla f(x^k) + \beta^k d^{k-1}.
\]

The most common way to compute \(\beta^k \) is

\[
\beta^k = \frac{\nabla f(x^k)^T (\nabla f(x^k) - \nabla f(x^{k-1}))}{\nabla f(x^{k-1})^T \nabla f(x^{k-1})}
\]

It is possible to show that the choice \(\beta^k \) ensures the conjugacy condition.

2.2 Selecting Stepsize \(\alpha \)

- **Minimization Rule**: choose \(\alpha^k \in [0, s] \) so that \(f \) is minimized, i.e.

\[
f(x^k + \alpha^k d^k) = \min_{\alpha \in [0, s]} f(x^k + \alpha d^k)
\]

which typically involves a one-dimensional optimization (i.e. a line-search) over \([0, s] \).
• **Successive Stepsize Reduction - Armijo Rule:** idea is to start with initial stepsize s and if $x^k + sd^k$ does not improve cost then s is reduced:

 Choose: $s > 0$, $0 < \beta < 1$, $0 < \sigma < 1$

 Increase: $m = 0, 1, ...$

 Until: $f(x^k) - f(x^k + \beta^m sd^k) \geq -\sigma \beta^m s \nabla f(x^k)^T d^k$

 where β is the rate of decrease (e.g. $\beta = .25$) and σ is the acceptance ratio (e.g. $\sigma = .01$).

• **Constant Stepsize:** use a fixed step-size $s > 0$

 $\alpha^k = s$, $k = 0, 1, ...$

 while simple it can be problematic: too large step-size can result in divergence; too small in slow convergence

• **Diminishing Stepsize:** use a stepsize converging to 0

 $\alpha^k \to 0$

 under a condition $\sum_{k=0}^{\infty} \alpha^k = \infty$, x^k will converge theoretically but in practice is slow.

2.3 Example

• Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$

 $f(x) = x_1 \exp(-(x_1^2 + x_2^2)) + \frac{(x_1^2 + x_2^2)}{20}$

 The gradient and Hessian are

 $\nabla f(x) = \begin{bmatrix} x_1/10 + \exp(-x_1^2 - x_2^2)(1 - 2x_1^2) \\ x_2/10 - 2x_1x_2 \exp(-x_1^2 - x_2^2) \end{bmatrix}$,

 $\nabla^2 f(x) = \begin{bmatrix} (4x_1^3 - 6x_1) \exp(-x_1^2 - x_2^2) + 1/10 & (4x_1^2x_2 - 2x_2) \exp(-x_1^2 - x_2^2) \\ (4x_1^2x_2 - 2x_2) \exp(-x_1^2 - x_2^2) & (4x_1x_2^2 - 2x_1) \exp(-x_1^2 - x_2^2) + 1/10 \end{bmatrix}$.
• The function has a strict global minimum around $x^* = (-2/3, 0)$ but also local minima
• There are also saddle points around $x = (1, 1.5)$
• We compare gradient-method (blue) and Newton method (magenta)
 – Gradient converges (but takes many steps); $\nabla^2 f$ is not p.d. and Newton get stuck

![Graph showing gradient and Newton methods]

– Both methods converge if started near optimum; gradient zigzags

– Newton’s methods with regularization (trust-region) now works
2.4 Regularized Newton Method

The pure form of Newton’s method has serious drawbacks:

- The inverse Hessian $\nabla^2 f(x)^{-1}$ might not be computable (e.g. if f were linear)
- When $\nabla^2 f(x)$ is not p.d. the method can be attracted by global maxima since it just solves $\nabla f = 0$

A simple approach to add a regularizing term to the Hessian and solve the system

$$(\nabla^2 f(x^k) + \Delta^k) d^k = -\nabla f(x^k)$$
where the matrix Δ^k is chosen so that
\[
\nabla^2 f(x^k) + \Delta^k > 0.
\]
There are several ways to choose Δ^k. In \textit{trust-region} methods one sets
\[
\Delta^k = \delta^k I,
\]
where $\delta^k > 0$ and I is the identity matrix.

Newton’s method is derived by finding the direction d which minimizes the local quadratic approximation f^k of f at x^k defined by
\[
f^k(d) = f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d.
\]
It can be shown that the resulting method
\[
(\nabla^2 f(x^k) + \delta^k I)d^k = -\nabla f(x^k)
\]
is equivalent to solving the the optimization problem
\[
d^k \in \arg \min_{\|d\| \leq \gamma^k} f^k(d).
\]
The \textit{restricted direction} d must satisfy $\|d\| \leq \gamma^k$, which is referred to as the \textit{trust region}.

\textbf{References}