1 Mathematical Preliminaries I: Matrix Algebra

• vectors \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) and matrices \(A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n} \)

• scalar \(t \) denotes time, we write \(x(t) \) and \(A(t) \) when they are function of time

• Inner products
 \[x^T y \equiv x^T y \equiv x \cdot y \equiv \langle x, y \rangle \equiv \sum_{i=1}^{n} x_i y_i \]

• Matrix determinant \(\det(A) \) or \(|A| \) is
 \[\det(A) = \sum_{i,j=1}^{n} a_{ij} C_{ij}, \]
 where \(C_{ij} \) is called the \(ij \)-th cofactor, which is the determinant of the reduced matrix obtained by crossing out the \(i \)-th row and \(j \)-th column multiplied by \((-1)^{i+j} \).

• The determinant is also the signed volume of the parallelepiped whose sides corresponds to the columns of the matrix

• Matrix Inverse
 \[(A^{-1})_{ij} = \frac{1}{\det(A)} C_{ji}, \quad \text{for} \quad \det(A) \neq 0 \]

• Linear Independence: a set of vectors \(a_1 \in \mathbb{R}^n, \ldots, a_n \in \mathbb{R}^n \) are linearly independent if it is not possible to express one a linear combination of the others, i.e.
 \[x_1 a_1 + \cdots + x_n a_n = 0 \]
 implies that all scalars \(x_1, \ldots, x_n \) are zero. The rank of a matrix is the maximum number of linearly independent columns or rows. A square \(n \)-by-\(n \) matrix with rank less than \(n \) is called singular.
• The solutions \(\lambda_i\) to the equation
\[
\det(A - \lambda I) = 0,
\]
where \(I\) is the identity matrix, are called the \textit{eigenvalues} of \(A\). If \(Ax = y\) then \(\lambda x = y\) and the vectors \(x^i\) corresponding to \(\lambda_i\) are called the \textit{eigenvectors} of \(A\). Combining all solutions we have
\[
A [x^1 | \cdots | x^n] = [x^1 | \cdots | x^n] \operatorname{diag}([\lambda_1, \cdots, \lambda_n]) \iff AS = S\Lambda,
\]
or
\[
S^{-1}AS = \Lambda,
\]
which is called \textit{similarity transformation}, i.e. \(A\) is similar to the diagonal matrix \(\Lambda\). Two similar matrices \(A\) and \(B\) satisfy \(\lambda_i(A) = \lambda_i(B)\). We have the relationship
\[
\operatorname{trace}(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i(A)
\]
If \(A\) is symmetric then \(S^{-1} = S^T\), i.e. \(S\) is an orthogonal transformation.

• Consider the equation \(Ax = y\), where \(A \in \mathbb{R}^{n \times n}\). The following are equivalent:
 1. \(\det(A) \neq 0\)
 2. \(A^{-1}\) exists
 3. \(Ax = y\) has a unique solution for \(y \neq 0\)
 4. \(A\) is full rank;
 5. we have \(\lambda_i(A) \neq 0, i = 1, \ldots, n\) where \(\lambda_i(A)\) is the \(i\)-th eigenvalue

• The \textit{norm} of a vector is \(\|x\|^2 = x^T x\). For \(y = Ax\) for non-singular matrix \(A\) we have
\[
\|y\|^2 = x^T A^T A x = \|x\|_{A^T A}^2,
\]
where \(\|x\|_B^2\) is called a generalized norm, i.e. a norm in new coordinates defined by \(B\). The matrix \(B\) is \textit{positive definite} if \(\|x\|_B^2 > 0\) for all \(x \neq 0\), which is written as \(B > 0\). If \(\|x\|_B^2 \geq 0\) for all \(x \neq 0\) then \(B\) is \textit{positive semidefinite}, i.e. \(B \geq 0\).

• The \textit{norm} of a matrix
\[
\|A\| = \max_{\|x\|=1} \|Ax\|
\]

• \textit{Symmetric} matrices have real eigenvalues and mutually orthogonal, real, non-zero eigenvectors \(x_1, \ldots, x_n\). Assuming normalized \(\|x_i\| = 1\) we have
\[
A = \sum_{i=1}^{n} \lambda_i x_i x_i^T
\]
Let \(\lambda_1 \leq \cdots \leq \lambda_n\) be the eigenvalues of symmetric matrix \(A\), then we have
\[
\|A\| = \max\{|\lambda_1|, |\lambda_2|\}, \quad \lambda_1 \|y\|^2 \leq y^T Ay \leq \lambda_2 \|y\|^2, \text{ for all } y \in \mathbb{R}^n
\]
• Geometric Notions:

- The scalar equation \((a^i)^T x - y_i = 0\) for a given scalar \(y_i\) and vector \(a^i\) defines a hyperplane in \(\mathbb{R}^n\) with normal vector \(a^i\). The intersection of \(n\) such hyperplanes is a point determined by \(Ax = y\).

- The equation \(x^T \Sigma^{-1} x - c = 0\) determines a quadratic surface. If \(\Sigma > 0\) and \(\Sigma = \Sigma^T\) then this is an hyperellipsoid in \(\mathbb{R}^n\) with principal axes equal to \(\sqrt{\lambda_i/c}\) where \(\lambda_i\) are the eigenvalues of \(\Sigma\). Furthermore, since \(\Sigma = S^T \Lambda S\) the axis of the ellipsoid are rotated by \(S\). Clearly, if \(\lambda_i = 0\) for some \(i\) then the hyperellipsoid is flat along that dimension and its volume (i.e. determinant) is zero.

- More generally, a scalar function \(f(x) = 0\) defines a hypersurface in \(\mathbb{R}^n\). Taylor expansion gives:
 \[f(x) \approx f(x_0) + \left. \frac{\partial f}{\partial x} \right|_{x=x_0} (x - x_0) = 0,\]
so that the normal to the surface is simply the gradient. A closer approximation results from second-order expansion
 \[f(x) \approx f(x_0) + \left. \frac{\partial f}{\partial x} \right|_{x=x_0} (x - x_0) + \frac{1}{2} (x - x_0)^T \left. \frac{\partial^2 f}{\partial x^2} \right|_{x=x_0} (x - x_0) = 0,\]
where \(\frac{\partial^2 f}{\partial x^2} \equiv B\) is the \(n\)-by-\(n\) Hessian matrix. If \(B \geq 0\) (\(> 0\)) we call the function locally convex (strictly locally convex) near \(x_0\). If it is true for all \(x_0\) then \(f\) is convex (strictly convex).

- Derivative Notation: Let \(f\) be a function of two variables \(x \in \mathbb{R}^n\) and \(y \in \mathbb{R}^m\). The following equivalent notations will be used
 \[\frac{\partial f}{\partial x}(x,y) \equiv \partial_x f(x,y) \equiv f_x(x,y) \equiv D_1 f(x,y)\]
 \[\frac{\partial f}{\partial y}(x,y) \equiv \partial_y f(x,y) \equiv f_y(x,y) \equiv D_2 f(x,y)\]
Similar notation is used for higher derivatives, e.g.
 \[\frac{\partial^2 f}{\partial x^2}(x,y) \equiv \partial_x^2 f(x,y) \equiv f_{xx}(x,y) \equiv D_2^2 f(x,y)\]
We regard \(\partial_x f\) as a row vector, i.e.
 \[\partial_x f = \begin{bmatrix} \frac{\partial f}{\partial x_1}, & \cdots, & \frac{\partial f}{\partial x_n} \end{bmatrix}\]
The gradient of \(f\) denoted by \(\nabla_x f\) is the column vector
 \[\nabla_x f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \partial_x f^T.\]
The notation extends when $f(x)$ is a column vector of functions, in which case $\partial_x f$ is a matrix called the Jacobian.

The differential df of a function $f(x, y)$ is

$$df = f_x \cdot dx + f_y \cdot dy,$$

where dx and dy are regarded as infinitesimal changes in x and y. In other words, df defines how f changes subject to infinitesimal changes in its parameters.