1 Equality Constraints

In optimal control we will encounter cost functions of two variables $L : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$ written as

$$L(x, u)$$

where $x \in \mathbb{R}^n$ denotes the state and $u \in \mathbb{R}^m$ denotes the control inputs. We are interested in minimizing this function subject to the equality constraints

$$f(x, u) = \begin{bmatrix} f_1(x, u) \\ \vdots \\ f_n(x, u) \end{bmatrix} = 0.$$

In order to establish optimality conditions we first differentiate the constraint $f(x, u) = 0$ to get

$$df = f_x \cdot dx + f_u \cdot du = 0,$$

(note that we can also write the above as $df = \nabla_x f^T dx + \nabla_u f^T du = 0$, using the gradient notation $\nabla_x f \equiv f_x^T \equiv \partial_x f^T$). Then assuming f_x is a non-singular square matrix

$$dx = -f_x^{-1} f_u \cdot du,$$

i.e. this is how small changes in u (i.e. du) must relate to small changes in x (i.e. dx). Now we have that

$$dL = L_x \cdot dx + L_u \cdot du = (L_u - L_x f_x^{-1} f_u) \cdot du$$

which is interpreted as the gradient of L w.r.t. u at a point where $f(x, u) = 0$ holds true. Recall that minimizing L with respect to u requires exactly that

$$L_u - L_x f_x^{-1} f_u = 0,$$

which is our first-order necessary condition. Notice that we assumed that the variables x and u are such that f_x is always nonsingular. This works well if the constraint f were linear but does not easily generalize.
1.1 The Lagrangian multiplier approach

A more general approach is to “adjoin” the constraints to the cost using “multipliers” $\lambda_1, \ldots, \lambda_n$ to form a new function

$$H(x, u, \lambda) = L(x, u) + \sum_{i=1}^{n} \lambda_i f_i(x, u) \equiv L(x, u) + \lambda^T f(x, u),$$

where H is called the Hamiltonian. The idea is to transform the constraint optimization of L into an unconstrained minimization of the new function H.

We will now show that minimizing H is equivalent to solving the original problem. First note that the condition $H_x = 0$ is equivalent to

$$L_x + \lambda^T f_x = 0 \Rightarrow \lambda^T = -L_x(f_x)^{-1},$$

so we would guess that this is the solution for λ as a function of x, u (and verify it later).

Keeping $f(x, u) = 0$ fixed is equivalent to satisfying $dx = -f_x^{-1}f_u \cdot du$ and we have

$$dL = L_x dx + L_u du = (-L_x(f_x)^{-1} f_u + L_u) du = (L_u + \lambda^T f_u) du = H_u \cdot du \quad (2)$$

Therefore, the condition $dL = 0$ when $f(x, u) = 0$ is equivalent to the necessary optimality conditions for $H = L(x, u) + \lambda^T f(x, u)$:

$$\partial_\lambda H = 0 \Rightarrow f(x, u) = 0, \quad (3)$$
$$\partial_x H = 0, \quad (4)$$
$$\partial_u H = 0 \quad (5)$$

which are $2n + m$ equations for the $2n + m$ unknowns x, u, and λ. Note that these equations are very general, e.g. they do not require finding coordinates x for which f_x must always be invertible.

1.1.1 Example

Consider $L(x, u) = \frac{1}{2}qx^2 + \frac{1}{2}ru^2$ subject to $f(x, u) = x + mu - c$, where $q > 0, r > 0, m, c$ are given constants. We have

$$H_x = qx + \lambda \quad \Rightarrow \lambda = -qx \quad (6)$$
$$H_u = ru + m\lambda \quad \Rightarrow u = \frac{m}{r}\lambda = \frac{mq}{r}x \quad (7)$$

Substitute u into the constraint $f(x, u) = 0$ we obtain

$$x + \frac{m^2q}{r}x - c = 0, \Rightarrow x = \frac{rc}{r + m^2q}$$
In order to determine the sufficient conditions we examine the second-order expansion of $L(x, u)$. This is most conveniently accomplished using $L(x, u) = H(x, u, \lambda) - \lambda^T f(x, u)$, i.e.

$$dL \approx (H_x, H_u) \left(\frac{dx}{du} \right) + \frac{1}{2} (dx^T, du^T) \begin{bmatrix} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{bmatrix} \begin{bmatrix} dx \\ du \end{bmatrix} - \lambda^T df$$

We can substitute the constraint $df = 0 \iff dx = -f_x^{-1} f_u du$
as well as the necessary condition $H_x = 0$ to obtain

$$dL \approx \frac{1}{2} du^T \begin{bmatrix} -f_u^T (f_x^{-1})^T, I \end{bmatrix} \begin{bmatrix} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{bmatrix} \begin{bmatrix} -f_x^{-1} f_u \\ I \end{bmatrix} du$$

The positive-definiteness of this quadratic form for all $du \neq 0$ at an optimal solution u^* is a sufficient condition for a local optimum.

1.2 The general optimization setting

More generally, assume we want to minimize $L(y)$, for $y \in \mathbb{R}^{n+m}$, subject to n equalities

$$f(y) = \begin{bmatrix} f_1(y) \\ \vdots \\ f_n(y) \end{bmatrix} = 0$$

Feasible changes dy are tangent to $f(y)$, i.e. satisfy

$$f_y \cdot dy = 0,$$

which can also be equivalently written using gradient notation as:

$$\nabla f_i^T dy = 0, \quad \text{for all} \quad i = 1, \ldots, n.$$
We will employ geometric reasoning to obtain the optimality conditions. First, note that directions orthogonal to any feasible dy must be spanned by the gradients $\{\nabla f_1, \cdots, \nabla f_n\}$. At an optimum y^* we must also have

$$\nabla L(y^*)^T dy = 0,$$

i.e. ∇L is orthogonal to any feasible dy and must be spanned by gradients as well. This can be expressed as:

$$\nabla L(y^*) = -\sum_{i=1}^{n} \lambda_i^* \nabla f_i(y^*)$$

where the minus sign is by convention, and the scalars λ_i can be arbitrary. Therefore, we have

$$\nabla L(y^*) + \sum_{i=1}^{n} \lambda_i^* \nabla f_i(y^*) = 0 : \text{first-order necessary conditions}$$

along with

$$dy^T \left[\nabla^2 L(y^*) + \sum_{i=1}^{n} \lambda_i^* \nabla^2 f_i(y^*) \right] dy \geq 0, \text{ second-order necessary conditions}$$

then constitute the necessary conditions for optimality. Note that in the above dy is not arbitrary, i.e. we require that $\nabla f_i(y^*)^T dy = 0$ for all $i = 1, \ldots, n$.

Sufficient conditions for a strict local optimum are obtained by requiring the positive-definiteness of the quadratic form above.

Finally, note that the multipliers are related to the solution sensitivity. The relationship

$$\nabla L = -\sum_{i=1}^{n} \lambda_i \nabla f_i$$

signifies that the multipliers are, roughly speaking, the ratio of the change in cost to the change in constraint. In other words, the i-th multiplier λ_i determines how changes in the i-th constraint f_i relate to changes in the cost L as a result of perturbing the solution by dy.

2 Checking Sufficient Conditions in practice

A common algebraic way to check the sufficient conditions is through QR decomposition of the constraint gradient. In particular, we have that

$$\nabla f^T dy = 0 \quad \Rightarrow \quad dy \in \text{Null}(\nabla f^T)$$

and finding the null space can be accomplished using the QR decomposition of ∇f, i.e.

$$\nabla f = Q \begin{bmatrix} R \\ 0 \end{bmatrix}.$$

where $Q \in \mathbb{R}^{n \times n}$ is such that $Q^T Q = I$ and $R \in \mathbb{R}^{m \times m}$ is upper triangular. Therefore, any dy of the form

$$dy = Q \begin{bmatrix} 0 \\ du \end{bmatrix},$$
for some arbitrary $du \in \mathbb{R}^{n-m}$ would satisfy (??). If we decompose Q according to

$$Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix},$$

where $Q_1 \in \mathbb{R}^{n \times m}$ and $Q_2 \in \mathbb{R}^{n \times (n-m)}$, then dy can be expressed using the last $n - m$ columns in Q as

$$dy = Q_2 du,$$

which leads to the sufficient conditions

$$du^T Q_2^T \left[\nabla^2 L(y^*) + \sum_{i=1}^{m} \lambda_i \nabla^2 f(y^*) \right] Q_2 du > 0,$$

for arbitrary $du \neq 0$, i.e. it reduces to checking that the quadratic matrix $Q_2^T \left[\nabla^2 L(y^*) + \sum_{i=1}^{m} \lambda_i \nabla^2 f(y^*) \right] Q_2$ is positive definite.

3 Inequality Constraints

Inequality constraints are used to encode allowable regions in state and control space. A general class of problems with such constraints involve the minimization of

$$L(y)$$

subject to

$$f(y) \leq 0,$$

where f can be of any dimension. Let y^* be the unconstrained minimum of $L(y)$. If the constrained is not violated, i.e. if $f(y^*) \leq 0$ then problem is solved. If we have that

$$f(y^*) > 0,$$

then we say that the constraints are active and must be enforced similar to equality constraints, i.e. using the Hamiltonian

$$H(y, \lambda) = L(y) + \lambda^T f(y),$$

with the main difference that the multipliers must be positive when the constraint is active, i.e.

$$\lambda = \begin{cases}
\geq 0, & f(y) = 0, \\
= 0, & f(y) < 0.
\end{cases}$$

The condition $H_y = 0$ is equivalent to the relationship

$$\nabla L = - \sum_{i=1}^{n} \lambda_i \nabla f_i$$

which now has the geometric interpretation that the cost gradient must be spanned by the negative constraint gradients. In other words, the gradient of L with respect to y at a minimum must be pointed in such a way that decrease of L can only come by violating the constraints.

The sufficient condition for local minimum of $L(y)$ with $f(y) \leq 0$ includes the standard equality constraint conditions to which we add the condition that all $\lambda > 0$.

Note: when the constraint is active we let $\lambda \geq 0$ rather than require $\lambda > 0$ since the case $\lambda = 0$ might also satisfy the necessary conditions. In fact, when $\lambda = 0$ then $\nabla L = 0$ which is more restrictive than only requiring the cost gradient to be spanned by constraint gradients.
3.1 Example

Consider the function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \)

\[
L(x) = x_1 \exp(-x_1^2 + x_2^2) + (x_1^2 + x_2^2)/20
\]

subject to the inequality constraint

\[
f(x) = x_1 x_2/2 + (x_1 + 2)^2 + (x_2 - 2)^2/2 - 2 \leq 0
\]

See lecture3_2.m