1. Consider the minimization of

\[J = \frac{1}{2} x(1)^2 + \int_0^1 \frac{1}{2} [x(t)u(t)]^2 dt, \]

subject to the nonlinear dynamics

\[\dot{x} = xu, \quad x(0) = 1. \]

Derive an optimal feedback control using the HJB equation. In the process, show that the HJB partial differential equation has a solution that is a quadratic function in \(x \).

2. Consider the LQR problem with known disturbance \(w(t) \) which requires the minimization of

\[J = \frac{1}{2} x(t_f)^T P_f x(t_f) + \frac{1}{2} \int_{t_0}^{t_f} [x(t)^T Q(t)x(t) + u(t)^T R(t)u(t)] dt, \]

subject to

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) + w(t). \]

a) Using the HJB equation, show that a possible value function has the form

\[V(x(t), t) = \frac{1}{2} x(t)^T P(t)x(t) + b(t)^T x(t) + c(t) \]

and show that the associate optimal control is

\[u(t) = K(t)x(t) + k(t), \]

where \(K(t) \) and \(k(t) \) are the feedback gain matrix and feedforward term, respectively. Derive the differential equations for \(\dot{P}, \dot{b}, \dot{c} \) and their boundary conditions which satisfy the HJB equation.

b) Do the discrete-time equivalent of a)

4. Nonlinear numerical optimal control implementation:
a) An example of a direct shooting method is provided with an example application to a
simple car model (car_shooting.m) that exploits the least-squares structure of the cost
function. You are required to apply the same method to a new system of your choice, or
to the two-link arm example with discrete dynamic function \(f_k \) given in file arm_sim.m.

Details: this problem is implemented using the Gauss-Newton (GN) least-squared method
for optimizing over the controls \(\xi \triangleq u_{0:N-1} \). Using the dynamics each state can be
expressed as a function of \(\xi \) which is encoded through the functions \(x_k = \psi_k(\xi) \) for
\(k = 0, \ldots, N \). The cost is then expressed as \(J(\xi) = \frac{1}{2} g(\xi)^T g(\xi) \), where \(g(\xi) \) is given by

\[
g(\xi) = \begin{bmatrix}
\sqrt{R_0} (u_0 - u_d) \\
\sqrt{Q_1} (\psi_1(\xi) - x_d) \\
\sqrt{R_1} (u_1 - u_d) \\
\vdots \\
\sqrt{Q_{N-1}} (\psi_{N-1}(\xi) - x_d) \\
\sqrt{R_{N-1}} (u_{N-1} - u_d) \\
\sqrt{Q_f} (\psi_N(\xi) - x_f)
\end{bmatrix},
\]

for some desired control \(u_d \), desired state \(x_d \), and desired final state \(x_f \). Since \(R_k > 0 \) the
Jacobian \(\partial g(\xi) \) is guaranteed to be full rank and one can apply a GN iterative method
directly to update \(\xi \to \xi + \delta \xi \) where \(\delta \xi = - (\partial g^T \partial g)^{-1} \partial g^T g \). In addition, the Jacobian
has a lower-triangular structure that can be exploited in the Cholesky GN solution.

b) A general discrete optimal control code (ddp.zip) is provided along with two examples
(2-dof robotic arm and a second-order wheeled vehicle model). You have two options: 1)
extend one of the two provided models; or 2) implement a new model of your own choice
in a similar manner as the two examples. In both cases you must include meaningful
control bounds (by modifying ddp.m) and add environmental obstacles (recall HW3#3).
Obstacles should be added as a penalty/repulsive potential term to the cost function. In
your plots clearly show that the computed controls do not exceed the specified bounds.

Details: Assume that we need to enforce a constraints of the form

\[
\sum_{i=1}^{m} c_k(x_k, u_k) \leq 0, \quad \text{for all } k = 0, \ldots, N-1,
\]

where \(c_k = (c_k^1, \ldots, c_k^m) \) are \(m \) constraint functions. This can be accomplished by adding
penalty terms to the trajectory costs \(L_k \), i.e. by using

\[
\bar{L}_k(x, u) = L_k(x, u) + \frac{\beta_k}{2} \| g_k(x, u) \|^2,
\]

in place of \(L_k(x, u) \), where \(g_k(x, u) = \max(c_k(x, u), 0) \) for some chosen coefficient \(\beta_k > 0 \)
that controls the “softness” of the constraint (here max is applied independently to each
component of the vector \(c_k \)). Then the Jacobian with respect to \(x \) is

\[
\nabla_x \bar{L}_k(x, u) = \nabla_x L_k(x, u) + \beta_k \nabla_x g_k(x, u)^T g_k(x, u),
\]

and is similarly defined with respect to \(u \). The Hessian is

\[
\nabla^2_x \bar{L}_k(x, u) = \nabla^2_x L_k(x, u) + \beta_k \nabla_x g_k(x, u)^T \nabla_x g_k(x, u) + \beta_k \sum_{i=1}^{m} g^i_k(x, u) \nabla^2_x g^i_k(x, u)
\]
and is similarly defined with respect to u. In some cases (when either g_k is small or $\nabla^2_g(x,u)$ has small eigenvalues) the last term above can be ignored.

See example `ddp_pnt_obst.m`

c) Implement a nonlinear programming strategy using direct transcription/collocation (as explained in the notes and also in Betts, 1998) to one of the two provided models (car or arm), or to a model of your choice. This can be accomplished by defining the cost and constraints and finding a solution using Matlab `fmincon`. See example `trajopt_sqp_car.m`. Obstacles should be added as inequality constraints.

Note: email your code to zharris7@jhu.edu and marin@jhu.edu with a subject line starting with: **EN530.603.F2015.HW4**; in addition attach a printout of your code and plots (annotated if necessary) to your homework solutions.