1. Find the stationary points (i.e. that satisfy $\nabla L = 0$) of the following and determine whether they are maxima, minima, or saddle points:

(a) $L(x) = (1 - x_1)^2 + 200(x_2 - x_1^2)^2$
(b) $L(u) = (u - 1)(u + 2)(u - 3)$
(c) $L(u) = (u_1^2 + 3u_1 - 4)(u_2^2 - u_2 + 3)$

2. Find the stationary points of the following and determine whether they are maxima, minima, or saddle points:

(a)

$$\begin{align*}
\text{minimize} & \quad L(x) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) \\
\text{subject to} & \quad f(x) = x_1 + x_2 + x_3 = 0
\end{align*}$$

(b)

$$\begin{align*}
\text{minimize} & \quad L(u) = (u_1^2 + 3u_1 - 4)(u_2^2 - u_2 + 3) \\
\text{subject to} & \quad f(u) = u_1 - 2u_2 = 0
\end{align*}$$

3. (a) Consider the optimization of a quadratic cost subject to linear constraints, i.e. minimize

$$L(x, u) = \frac{1}{2}x^TQx + \frac{1}{2}u^TRu,$$

subject to

$$f(x, u) = Ax + Bu + c = 0,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$; $Q \succeq 0$ (positive semidefinite matrix) and $R > 0$ (positive definite matrix); $A \in \mathbb{R}^{n \times n}$ and $B^{n \times m}$ and $c \in \mathbb{R}^n$.

- Derive the necessary and sufficient conditions for an optimal solution using the Lagrangian multiplier approach. Be careful which matrices you are allowed to invert.
- Assume that A is full rank and compute the actual optimal solution.
(b) Consider the optimization of a quadratic cost subject to linear constraints, i.e. minimize

\[L(y) = \frac{1}{2} y^T M y \]

subject to

\[f(y) = Ay + c = 0, \]

where \(y \in \mathbb{R}^n \), \(M > 0 \) is positive definite, \(A \in \mathbb{R}^{m \times n} \) for \(m < n \) is full rank, and \(c \in \mathbb{R}^m \). Compute the optimal solution \(y^* \) and show that it is a global minimum.

4. Implementation: you are free to use parts of the code provided at the course homepage.

(a) Write a MATLAB function which implements gradient descent to optimize the cost-function in problem 1a given by

\[L(x) = (1 - x_1)^2 + 200(x_2 - x_1^2)^2. \]

You can use either a constant or a variable stepsize. What is the effect of the step-size choice? Use a starting point at \(x = (0,0) \).

(b) Find analytically the optimum of the following problem:

\[
\begin{align*}
\text{minimize} & \quad L(x,u) = x^2 + 20u^2 \\
\text{subject to} & \quad f(x,u) = x - 2u + 3 \leq 0
\end{align*}
\]

and use MATLAB fmincon function to verify your solution.

Note: email your code to marin@jhu.edu with subject line starting with: EN530.603.F2014.HW1; in addition attach a printout of the code to your homework solutions.

5. Consider the minimization of \(f(x) \) for \(x \in \mathbb{R}^n \). Newton’s method is derived by finding the direction \(d^k \in \mathbb{R}^n \) which minimizes the local quadratic approximation \(f^k \) of \(f \) at \(x^k \) defined by

\[f^k(d) = f(x^k) + \nabla f(x^k)^T d + \frac{1}{2} d^T \nabla^2 f(x^k) d. \]

In contrast, the search direction \(d^k \) in a trust-region Newton method is derived by solving the constrained optimization

\[\text{minimize } f^k(d) \quad \text{subject to } \|d\| \leq \gamma^k, \]

for a given \(\gamma^k > 0 \) called the trust-region radius. Using the Lagrangian multiplier approach prove that this optimization is equivalent to solving

\[(\nabla^2 f(x^k) + \delta^k I) d^k = -\nabla f(x^k), \]

where \(\delta^k \geq 0 \). How do you interpret the value \(\delta^k \). Can you propose a reasonable choice for \(\delta^k \) considering the properties of \(\nabla^2 f(x^k) \).

6. Read one (or both) of the following two historical perspectives on optimal control and write a one-paragraph summary of the paper you choose:

(b) Sussman and Willems, “300 Years of Optimal Control: From the Brachystochrone to the Maximum Principle”, IEEE Control Systems, 1997